Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yang Qu* and Jian-Jun Peng

Department of Chemistry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China

Correspondence e-mail: doctor-qu@126.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.042$
$w R$ factor $=0.107$
Data-to-parameter ratio $=12.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Tetraamminebis(4-nitrobenzoato- κ O) copper(II)

In the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]$, the Cu atom is six-coordinated by four ammine N and two 4-nitrobenzoate O atoms. Of the two nitrobenzoate ligands, one gives weaker coordination than the other. These Cu complexes are connected through a complex pattern of hydrogen-bonding interactions, resulting in a three-dimensional network.

Comment

As a part of our study of copper(II) carboxylate complexes with molecular ligands showing biologically interesting properties, the title compound, (I) has been prepared and its structure determined. We report here this new structure of a $\mathrm{Cu}^{\mathrm{II}}$-carboxylate coordination complex.

(I)

The asymmetric unit of (I) contains a Cu complex coordinated by four ammine N and two 4-nitobenzoate O atoms (Fig. 1). Although the two $\mathrm{Cu}-\mathrm{O}$ distances, 2.389 (2) \AA and 2.8744 (2) \AA, are different, the longer one may be regarded as a normal bond in a complex with Jahn-Teller distortion where distances in the range $2.6-3.0 \AA$ are frequently reported (Harding, 2000).

The four coordinating ammine N atoms around the central Cu are coplanar, constituting the equatorial square plane. The Cu atom lies -0.0798 (12) \AA from this N_{4} plane, whereas atoms O1 and O7 atoms are, respectively, -2.431 (2) and 2.736 (3) \AA from it. The $\mathrm{Cu} 1-\mathrm{N}$ distances range from 2.013 (3) to 2.032 (3) \AA, values comparable to those observed in diamminediaquabis(4-pyridylthioacetato)copper(II) (Huang et al., 2004).

The shortest $\mathrm{Cu}-\mathrm{O}$ (4-nitrobenzoate) bond length, 2.388 (3) \AA, is longer than the corresponding bond distances reported for related Cu -nitrobenzoate coordination complexes: $1.962(5) \AA$ in $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$, $(\mathrm{Lin} \& \mathrm{Lu}, 2004)$ and 1.971 (1) \AA in $\left[\mathrm{Cu}\left(2-\mathrm{NO}_{2} \mathrm{bz}\right)_{2}(3-\text { pyme })_{2^{-}}\right.$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ (Stachova et al., 2006).

The ammine ligands and O atoms of 4-nitronenzoate are engaged in extensive hydrogen bonding (Table 1), leading to the formation of a three-dimensional network (Fig. 2).

Experimental

All reagents and solvents were used as obtained without further purification. $\mathrm{CuO}(1 \mathrm{mmol}, 80 \mathrm{mg})$ and 4 -nitrobenzoic acid (2 mmol , 332 mg) were dissolved in an aqueous ammonia solution (10 ml , 30%), and the mixture was stirred for about 20 min at room temperature and then poured into a Teflon vessel till 30% of its volume was filled. The vessel was then placed in a stainless steel tank for hydrothermal treatment. The crystallization reaction was performed at 423 K under autogenous pressure for 24 h . After the autoclave was cooled and depressurized, large deep-blue crystals were found at the bottom of the vessel. The crystals were isolated, washed three times with water and dried in a vacuum desiccator using anhydrous CaCl_{2} (yield 66%). Elemental analysis found: $\mathrm{C} 36.04, \mathrm{H}$ 4.64, N 18.35%; calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{CuN}_{6} \mathrm{O}_{8}:$ C $36.25, \mathrm{H} 4.34, \mathrm{~N}$ 18.11%.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]$
$M_{r}=463.90$
Triclinic, $P \overline{1}$
$a=7.2429(6) \AA$
$b=10.6794(9) \AA$
$c=12.6156(11) \AA$
$\alpha=83.864(1)^{\circ}$
$\beta=74.835(1)^{\circ}$
$\gamma=79.867(1)^{\circ}$
$V=925.24(14) \AA^{3}$
Data collection

Siemens SMART CCD area-	3204 independent reflections
\quad detector diffractometer	2668 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.024$
Absorption correction: multi-scan	$\theta_{\max }=25.0^{\circ}$
$(S A D A B S ;$ Sheldrick, 1996)	$h=-8 \rightarrow 8$
$T_{\min }=0.701, T_{\max }=0.790$	$k=-12 \rightarrow 12$
5762 measured reflections	$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}	H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0636 P)^{2}\right]$
$w R\left(F^{2}\right)=0.107$	where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$S=1.03$	$(\Delta / \sigma)_{\max }=0.001$
3204 reflections	$\Delta \rho_{\max }=0.55 \mathrm{e}^{-3}$
266 parameters	$\Delta \rho_{\min }=-0.33 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 4^{\text {i }}$	0.89	2.46	3.313 (4)	160
$\mathrm{N} 3-\mathrm{H} 3 \mathrm{~B} \cdots 5^{\text {ii }}$	0.89	2.13	3.017 (4)	173
$\mathrm{N} 3-\mathrm{H} 3 \mathrm{C} \cdots 5^{\text {iii }}$	0.89	2.51	3.357 (4)	160
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2^{\text {iv }}$	0.89	2.14	3.012 (4)	165
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O} 2$	0.89	2.32	2.959 (3)	128
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{C} \cdots \mathrm{O}^{\text {iii }}$	0.89	2.16	3.049 (3)	177
$\mathrm{N} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2^{\text {iv }}$	0.89	2.10	2.958 (3)	161
N5-H5B $\cdots \mathrm{O}^{\text {v }}$	0.89	2.19	3.073 (4)	170
$\mathrm{N} 5-\mathrm{H} 5 \mathrm{C} \cdots \mathrm{O}^{\text {vi }}$	0.89	2.32	3.205 (3)	175
$\mathrm{N} 6-\mathrm{H} 6 A \cdots \mathrm{O}{ }^{\text {ii }}$	0.89	2.12	3.007 (4)	172
$\mathrm{N} 6-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{O}^{\text {vi }}$	0.89	2.53	3.374 (4)	159
N6-H6C $\cdots 5^{\text {v }}$	0.89	2.15	3.036 (4)	170

Symmetry codes: (i) $-x,-y,-z+1$; (ii) $x, y-1, z$; (iii) $-x,-y+2,-z$; (iv) $-x,-y+1,-z+1$; (v) $-x+1,-y+2,-z$; (vi) $-x+1,-y,-z+1$.

Molecular structure of the title compound, (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

Crystal packing of (I), showing the three-dimensional hydrogen-bonding network. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonds have been omitted.

H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ distances of 0.93 and $0.89 \AA$, respectively, and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$ and $1.5 U_{\mathrm{eq}}(\mathrm{N})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Harding, M. M. (2000). Acta Cryst. D56, 857-867.
Huang, Y. Q., Zhang, H. \& Chen, J. G. (2004). Acta Cryst. E60, m133-m134.
Lin, Z. D. \& Lu, J. Y. (2004). Acta Cryst. E60, m1798-m1800.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stachova, P., Korabik, M., Koman, M. \& Valigura, D. (2006). Inorg. Chim. Acta, 359, 1257-1281.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

